
Lab 6 Report: Search-Based Path Planning and Trajectory Pursuit

Team 19

Michael Wong
Alan Yu

Joshua Sohn
Owen Matteson

Ragulan Sivakumar
Shenzhe Yao

6.4200: RSS

April 27, 2023

1 Introduction (MW)

In the previous lab, we successfully achieved the localization of our car and accurately determined its position
on the map. Now, we have taken a step further to make our autonomous car truly autonomous by learning
how to drive it without human intervention. The focus of this laboratory exercise is on the core aspects of
autonomous operation: planning and control. Our goal is to determine the safest and shortest path to our
destination and ensure that our car drives along it smoothly.

The planning phase involves calculating trajectories from our car’s current position to the goal pose on
a known occupancy grid map using either a search-based or sampling-based motion planning method. We
must ensure that the planned path is free from obstacles to guarantee a smooth and secure ride to our
destination.

To execute the planned path, we will use the pure pursuit algorithm, which uses the particle filter and
pure pursuit control to follow the predefined trajectory on the map. This algorithm plays a big role in
allowing our car to navigate autonomously and precisely follow the path we have planned.

By combining these two components, we have successfully planned the path and achieved full autonomy
as the car autonomously drives along the path.

2 Technical Approach

2.1 Problem Formulation (AY)

In this problem, we have access to a map M with occupancy grid OM . Our objective is to take in a desired
start and end pose (pstart,pend) and perform the following objectives:

1. Plan a feasible path P between pstart and pend.

2. Follow the path with minimal error and stop at the end position,

where a feasible path is one that does not collide with any occupied cell in OM .

1

Figure 1: High level summary of the pipeline used for this lab. We receive a desired start and end pose
and feed it to the path planner, which outputs a set of points that can be interpolated to produce a path.
The path follower will then work in conjunction with the Localization module to control the car’s movement
along the generated trajectory.

We also assume access to the Localization module from the previous lab, which takes in odometry data and
outputs an estimate of the car’s pose in the frame of M. At a high level, our process (Figure 1) will consist
of the following steps.

1. Receive pstart and pend from the user.

2. Use the path planner to output a set of points S = {xk}Nk=1 representing the trajectory.

3. Interpolate (e.g. linearly) between points in S to produce path P.

4. Feed in P to the Path Follower to output driving controls v and ϕ (speed and the steering angle) to
minimize error to P.

5. Receive feedback from Localization and repeat the control process.

We now discuss the implementation of each module.

2.2 Path Planning (RS)

With path planning, we are given a start and end position alongside an occupancy grid, which tells us where
the walls are in our nearby environment, and our goal is to construct a path from that start position to
the end. We also wanted this to return the shortest possible path and to be easily calculable, for during
deployment, we cannot afford to spend too much time calculating an optimal path. Our overall strategy was
as follows:

1. Convert the start and goal position from real-world coordinates to indices in the occupancy grid.

2. Use A*, an algorithm which can find the shortest path from a start position to a goal, on the occupancy
grid to find a shortest path avoiding walls through the occupancy grid.

3. Convert that shortest path back to real-world coordinates.

We would then and pass that path on to our Pure Pursuit module, and our racecar would start following it.

2

2.2.1 Pros and Cons to Other Motion Planning Algorithms

We can lump motion planning algorithms into two categories: search-based and sampling-based. In search-
based algorithms, we use a graph representation of the world and construct our path through said graph.
Possible algorithms for such include breadth-first search (BFS), which finds the shortest paths to other
vertices in a graph with unweighted edges, Dijkstra’s, which finds the shortest path from a start point to all
other points in weighted graphs, and A*, which can be used to find the shortest path from a start point to
an end point.
One downside of search-based algorithms is that they can be computationally expensive. The runtime of BFS
is O(V +E), where V represents the number of vertices and E represents the number of edges, Dijkstra’s is
O(V · log V + E), and A* is O(E), so we can see that as the graphs get larger, the search-based algorithms
get more expensive and thereby more infeasible practically. Thus, we have sampling-based algorithms as
well. Instead of using an entire graph representation of the world, it randomly adds points to a set S, and
we continue adding points until we are able to form a path to our goal with the points in S. With this
randomness, sampling-based algorithm paths will not be optimal and could be dramatically longer than the
shortest path, but they’re also much more easily computable, giving the tradeoff between sampling-based
and search-based algorithms.
We are given a graph representation of the world via the occupancy grid supplied. Thus, we don’t need to
make that representation. We only need to be able to convert from real-world coordinates to indices in the
occupancy grid, which isn’t that computationally expensive. Moreover, the occupancy grids aren’t that big
at the scale of 1000 by 1000. This makes search-based algorithms a good option and the one that we chose
to pursue.
We chose specifically to use A* because it has the shortest asymptotic runtime. As will be explained later,
it has the downside of requiring lots of memory to store potential paths in a queue, but we aren’t concerned
with memory here. Time is the only issue, so A* suits our needs.

2.2.2 How A* Works Through the Graph with A* (RS)

At a high-level, A* works by building up multiple potential paths. Every time we analyze a path that doesn’t
end in our goal, we add a new path composed by sticking a neighbor of the last point onto the path, and we
do this for each neighbor of the last point. We continue as such until we get a path that ends in our goal.

However, if we analyzed paths in an arbitrary order though, we could end up wasting time analyzing and
building paths that aren’t heading towards the goal. Thus, to ensure we don’t over-analyze sub-optimal
paths, we analyze the paths from shortest to largest in terms of the distance underestimate. We define our
distance underestimate, du, as follows

de = current distance travelled in path + d(last point, goal),

where d(x, y) represents the Euclidean distance from a point x to y. By theorem, if you analyze paths in
order of a distance underestimate, A* will return the optimal path. With that stated, we can now detail
technical outline of A*.

• Initialize a queue with just our start position in it.

• Pop off the path of the queue with the lowest distance underestimate.

• If the last point of the path is our goal, we’re done. Otherwise, add a path to the queue for each
neighbor of the last point in the popped path. Note that a neighbor cannot be a point that is a wall
in the occupancy grid.

• Repeat step 3 until done.

As for what we used as the neighbors to a point in the occupancy grid, we used the eight points neighboring
a central square as depicted in the figure below.

3

Figure 2: A diagram representing the neighbors to a given point.

2.2.3 A* Optimizations

This implementation of A* could still falter from analyzing multiple paths that go through some point, x,
with the distances to x being longer in some paths than others. We wouldn’t want to analyze the longer
ones, for they’re certainly longer than the optimal which would use the shorter path. Thus, we include a
visited set as well and add this restriction to the addition of paths to the queue: we only add the path
including a neighbor n if n hasn’t been visited yet.

We also use the heapq data structure, for heapqs are able to find the lowest value for the distance underes-
timate much faster than other data structures. In terms of Big-Oh notation, a heapq is O(log n) vs O(n),
for a Python list, making the heapq structure a significantly better choice.

2.2.4 Graph Construction (RS)

Our implementation of A* will give us the shortest path, but when deployed onto our racecar, it might cut
corners too tight that our racecar cannot handle, and we could potentially crash into a wall. Thus, we would
want to give ourselves protection against that. Thus, we dilated the walls throughout the occupancy grid.
Specifically, if a point has a neighbor that is a wall, it became a wall in the dilated grid. We then did then
again so as to dilate by 2. Now, we could safely cut as many corners as we want in our planned path, for
regardless of how tight we cut corners, we have that inbuilt cushion of size 2 to protect us from crashes.

Figure 3: A diagram representing the original occupancy grid on the left and the dilated one on the right.
White represents a wall.

2.2.5 Path Compression

Our algorithm for A* returns all points along the path, but that makes for a long path of minutely changing
trajectories. This can be hard for our racecar to follow. Thus, we would like to have a shorter path encoding
the same information that we could pass along. To do this, we start from our starting position, find the last
point in our path that we can reach in a straight-line trajectory without hitting a wall, x, and we add x to
a new path. We then repeat until we hit our goal position. As depicted in the figure below, this reduces a
long path of over 30 points to one of just 4.

4

Figure 4: A diagram showing how we use path compression to encode the same path with many fewer points,
which are depicted as arrows. Left depicts our original path, whereas right is our compressed path

2.3 Path Following

Given the optimal path as a series of line segments, we implemented a path follower based on the pure
pursuit algorithm. Our path follower can be modularized into three steps:

1. Find the closest line segment on the path.

2. Locate the intersection point with that segment using the lookahead distance.

3. Pursue the intersection point using Pure Pursuit.

2.3.1 Identifying The Nearest Line Segment (JS)

Our goal is to find the line segment that is closest to the car’s current position. For every line segment AB on
the optimal path, we want to find the shortest distance from the car’s current position E to AB. However,
there are three distinct cases: 1) E is closest to A, 2) E is closest to B, and 3) E is within the range of AB.

(a) E is closest to A (b) E is closest to B (c) E is within the range of AB

Figure 5: E represents the car’s current position and AB represents a line segment on the optimal path.
The red area represents the range of AB.

5

Case 1: E is closest to A
This can be confirmed by checking that:

−−→
AB ·

−→
AE < 0 (1)

which means E lies in the opposite direction of AB. Therefore, the nearest point from E is A, and the

distance is given by
∣∣∣−→EA

∣∣∣.
Case 2: E is closest to B
This can be confirmed by checking that:

−−→
AB ·

−−→
BE > 0 (2)

which means E lies in the same direction as AB. Therefore, the nearest point from E is B, and the distance

is given by
∣∣∣−−→EB

∣∣∣.
Case 3: E is within the range of AB
If the dot product is 0, then E is perpendicular to AB, and the distance between E and AB is given by:

∣∣∣−−→EF
∣∣∣ = ∣∣∣∣ (−−→AB ×

−→
AE)∣∣∣−−→AB
∣∣∣

∣∣∣∣ (3)

Now, we have the distance from the car’s current position to every line segment in the path, and we take
the line segment that has the shortest distance. This closest segment was then used as the starting index
for iterating through the rest of the segments when finding intersection points, as outlined in section 2.3.2.

2.3.2 Locating a Point on the Path to Pursue(OM + JS)

In order to determine a viable point on a given path for our racecar to pursue at any given time, we construct
a circle around the car and find the intersection between this circle and the line segment. The circle is given
a radius based on a chosen parameter ld, the look-ahead distance. This parameter requires tuning based
on the speed of the racecar and the environment it is traveling in. The selection of this parameter will be
described in detail in section 2.3.3.

We can fully define any point on a line segment pline by adding some fraction t of the vector between the
start and end points to the start point.

v = pend − pstart

pline = pstart + t · v (4)

We can define pcar as the coordinates of the racecar’s current location. Any point x on the circle must be a
distance ld from pcar:

|x− pcar| = ld (5)

Therefore, the line intersects the circle if there is a point on the circle x such that x = pline. Substituting
pline in for x in equation 5 and using the definition for pline in equation 4, we can then write:

|pline − pcar| = ld

|pstart + tv− pcar| = ld (6)

6

We can then square both sides of the equation, and use the identity that A, |A|2 = A ·A for any vector A
to achieve:

l2d = (pstart + tv− pcar) · (pstart + tv− pcar)

=⇒ l2d = t2(v · v) + 2t(v · (pstart − pcar)) + pstart · pstart + pcar · pcar − 2(pstart · pend) (7)

Moving r2 to the lefthand side of the equation allows us to use the quadratic formula to solve for the two
solutions for t, t1 and t2, that satisfy equation 7.

a = v · v
b = 2v · (pstart − pcar)

c = pstart · pstart + pcar · pcar − 2(pstart · pend)

t =
−b±

√
b2 − 4ac

2a
(8)

If the discriminant
√
b2 − 4ac < 0, then there are no intersections with the line segment. Furthermore, we

impose the restriction that if a solution ti ̸∈ [0, 1] it must be rejected, as t is again a fraction of the line
segment. We can then have up to two points that represent the intersections between the line segment and
the racecar’s look-ahead circle, which can be solved for by plugging t1 and t2 into equation 4.

Figure 6: A diagram representing how a goal point is chosen in the case of two intersections with a single
line segment on the path. The arrow represents the line segment. The green point is the chosen point, while
the red point is the rejected point.

If there are two solutions t1, t2 corresponding to points pline,1, pline,2 for a given line segment, we need to
choose which point we set as our intersection point to pursue. To do this, we decided to choose the point
that minimizes the car’s need to turn. This is equivalent to finding the point that is best aligned with the
car’s current orientation θcurr. For each point, the inner product between the unit vector from the car’s
current position to the point and the unit vector of the car’s orientation is found as:

rd = pline − pcar (9)

Qinner = r̂d · θ̂curr (10)

We take the point that has the greater inner product Qinner.

Now, we have one solution for each line segment on the path. However, it’s still possible that there are
multiple solutions across multiple line segments as shown in figure 7. In this case, we again need to choose

7

which solution we set as our intersection point to pursue. We chose to pursue the point on the line segment
that is further along the path, because we want to get closer to our trajectory end point. This is achieved
by starting our search for the intersection point at the closest line segment, then iterating through the rest
of the segments as given in the original path trajectory.

2.3.3 Path Following Using Pure Pursuit on Nearest Path Segment (OM)

Pure pursuit is a controls algorithm used to calculate the necessary steering angle of the front wheels of a
ground vehicle in order to follow a semi-circular path towards a goal point. The intention behind a semi-
circular path, versus one that more quickly reduces the angle from the path, is to maintain small changes
in the steering angle rather than drastic ones. This should help the car with over-correcting past a desired
path, but is ultimately dependent on the chosen ld. Our implementation uses this algorithm on every time
step in order to pursue a point on the path that is ld away.

This goal point is the above-described intersection point between the look-ahead radius of the car and the
path. In the case that there is no intersection, meaning the car is not close to any segment on the path, then
the car will stay stationary. If there the radius only intersects with one segment on the line, then we can
easily choose that point as the goal point to pursue. However, if multiple intersections occur with multiple
segments on the path, as shown in figure 7, we will choose to follow the point that is further down the path
to ensure forward progress.

Figure 7: A diagram representing how a goal point is chosen in the case of intersections with multiple line
segments on the path. The direction of the path is indicated by the arrow on the line. The chosen point,
which is the one furthest down the path, is represented in green, while the rejected points are shown in red.

The algorithm uses equation 11 to calculate the racecar’s steering angle, δ, to achieve a circular path to that
point using the geometric values shown in figure 8.

δ = arctan
2L sinα

ld
(11)

8

Figure 8: A simplified diagram visualizing the geometric values used in the calculation of δ. ld is the chosen
look-ahead distance, L is the wheel-base length of the racecar, and α is the angle between the racecar’s
current orientation and the line of shortest distance connecting the car to the point.

2.4 Deployment in Real Environment (OM)

Similar to the wall following algorithm from lab 3, we found that the physical racecar would frequently
over-correct when attempting to pursue the desired path with the same parameters as simulation. In this
case, the only tunable parameter for our implementation is the pursuit algorithm’s look-ahead distance.

Given equation 11 from section 2.3.3, one can see that the steering angle δ is inversely related to the look-
ahead distance ld. This means that for a larger ld, δ will be smaller, and therefore the car will take a longer
pursuit route to a given point. Using this information and the results of brief qualitative testing, we deduced
that we must increase ld from .75 m to 1.4 m to reduce the likelihood of over-correcting past the planned path.

Furthermore, in order to ensure the safety of the racecar and reduce damage to its components when turning
around corners and obstacles, we increased the expansion value of the occupancy grid in order to increase the
distance between the path and the obstacles. This allows the racecar more room for error when navigating
sharp turns.

3 Experimental Evaluation

3.1 Testing in Simulation (AY)

After synthesizing our modules together, we investigate its qualitative and quantitive performance in simu-
lation. We find that we are able to navigate both long and complex paths successfully (Figure 11).

To evaluate quantitative performance, we examine four test scenarios in more detail: (a) a short straight
path, (b) a single corner, (c) a complex route, and (d) a long corner. We find that not only is the planning
time efficient, but our pure pursuit controls the car to be no more than 3 centimeters away from the planned
path on average. These results are summarized in Table 1 and Figure 10, and each test case is displayed in
Figure 9. The distance measurement is computed as the orthogonal distance to the closest line segment. We
notice that peaks in the errors occur at corners or wall irregularities, which is to be expected. However, they
diminish quickly which indicates that our control is able to adapt readily in these settings. Additionally,
the low number of points used indicates that the path compression is working well to reduce the number of

9

redundant points while increasing the smoothness in the trajectory.

Figure 9: We examine four encompassing test scenarios for evaluating the quantitative performance of our
pure pursuit module. These include (a) a short-straight path, (b) a single corner, (c) a double corner, and
(d) a complex path.

Table 1: Planning Time for Various Path Scenarios

Test Distance (m) Num Points Plan Time (s)
Short-Straight 5.95 2 0.016
Single Corner 11.12 11 0.320
Double Corner 50.86 21 5.596

Complex 54.43 9 5.560

10

Figure 10: Distance error for the pure pursuit module given the planned path in simulation. Our implemen-
tation maintains an average error of around 2 centimeters.

We noticed that a big factor playing into the accuracy of the pure pursuit was the performance of the
localization module. With poor localization, especially in the real world where noise is more pronounced,
the pure pursuit will have a certain amount of systematic error. Using the staff solution for localization (as
opposed to our own) helped in both cases, although the effect was much greater in the real world and will
be discussed in the following section.

3.2 Testing in Real Environment (OM)

The first step in validating the path planning and path following systems on the physical racecar was a
qualitative evaluation of the both systems working in tandem. This entailed placing the racecar at a location
in the physical environment and setting a corresponding estimate pose on the simulated map, then setting a
goal pose on the map to generate a path using the path planning algorithm, and finally allowing the car to
traverse this path using the pursuit algorithm. The results of this qualitative test can be seen in figure 12,
in which the car is seen traversing the path both in the real world and in the corresponding simulated view.
With the system validated qualitatively, the next step is to numerically test our implementation on the phys-
ical racecar. To do so, we needed to validate the trajectory follower algorithm exclusively, as path planning
is still done entirely on the simulated map, and, therefore, its effectiveness should not change. This allowed
us to channel the entirety of our focus into testing the racecar’s path-following ability.

We drew upon the simulation test suite to construct a suite containing a straight path test and a single cor-
ner path test. By reusing tests that were performed in simulation—and doing so in equivalent locations on
the basement map—we are able to eliminate confounding variables and accurately contrast the algorithm’s
performance in a real environment with that in simulation. The results of these tests can be seen in figure
13. We again tracked the estimated deviation of the car from the planned path.

For the straight path test, the difference in average error between simulation and the physical racecar is only
8 millimeters. However, despite the corner test on the racecar still having very low error at approximately 8
centimeters, this is a jump of around 6 centimeters up from the simulated corner test. This increase in error
can likely be attributed to localization error, as localization is less accurate in a real environment, especially
while turning a corner. Another factor could be the need for further tuning of the pursuit algorithm’s

11

(a) Successful navigation around long corner

(b) Traversing complex region

Figure 11: We visualize the result of our synthesized path planning and pure pursuit algorithms in simulation.
The racecar is able to safely and effectively navigate these challenging routes.

12

(a) Real life view of car traversing path in real envi-
ronment

(b) Simulated visualization of car traversing path in
real environment

Figure 12: The visualized result of our synthesized path planning and pure pursuit algorithms in a real environment
for a path around a corner in the Building 32 basement. The car was able to plan the path and safely traverse the
path from start to end with no collisions, indicating a qualitative success.

Figure 13: Two graphs visualizing the error between the car’s estimated position using localization and
planned path.

lookahead distance, as this may help reduce the spike in error as the car turns the corner.

13

3.3 Bonus: Fastest Implementation in Real World (SY)

Our team successfully demonstrated the real-world performance of our trajectory planning and tracking sys-
tem, resulting in an impressive completion time of 23.55 seconds on a marked segment of the Stata basement
loop. Below are photographs of our racecar at the start and end points of the race (Figure 14, Figure 15),
and the trajectory (Figure 16) we gained in the race.

Figure 14: Racecar at the starting point of the
race track.

Figure 15: Racecar at the finish line of the race
track.

Figure 16: Racecar trajectory planned out in the
RViZ from start to end.

14

This result highlights the effectiveness of our approach in trajectory planning and tracking. Our system was
able to plan and execute trajectories efficiently, maintaining a high level of accuracy throughout the race.
The top three teams with the fastest real-world implementations were awarded bonus points, and we are
confident that our performance will place us among the top contenders.

3.4 Limitations (SY)

Although our implementation of the A* algorithm achieved satisfactory results, it has several limitations.
We discuss these limitations and compare them to the advantages of sample-based planning methods in the
following sections.

Unscanned areas introduce gaps that challenge planning. Dilation of obstacles helps avoid getting stuck
in gaps, but determining the proper dilation amount is difficult. Insufficient dilation may still allow the
racecar to enter gaps, while excessive dilation may cause the algorithm to overlook narrow passages, leading
to inefficient paths or missed traversal opportunities.

The path planning using A* algorithm may sometimes result in sharp trajectories rather than smooth ones,
which can pose challenges for the racecar’s motion control. To address this issue, we can incorporate the
racecar’s dynamics into the planning process, taking into account its kinematic and dynamic constraints.
By doing so, we can design paths with limited curvature, ensuring that the racecar follows a smoother and
more efficient trajectory.

Another limitations of our A* algorithm is the inability to efficiently adapt to new start and end points. This
is due to the algorithm’s dependence on a fixed graph representation of the search space, which necessitates
a complete recomputation whenever start and end points change. This can result in a significant increase in
computation time, especially in large or complex environments. On the other hand, sample-based planning
methods offer a more efficient solution by reusing the existing graph for searches, allowing for faster explo-
ration and adaptation without the need for extensive resampling.

In addition to the aforementioned limitations, our search-based agorithm also struggles in dynamic environ-
ments where obstacles may appear or move unexpectedly. Sample-based planning methods, on the other
hand, are more adept at handling these situations by incorporating the environment information into the
sampling process. This advantage enables sample-based planners to update planned paths in real-time,
providing a more robust navigation performance in changing environments.

4 Conclusion (MW)

We have successfully achieved our goal of creating a truly autonomous car by implementing both the plan-
ning and control phases of autonomous operation. The planning phase involved calculating the safest and
shortest path to our destination using a search-based or sampling-based motion planning method on a known
occupancy grid map. The control phase utilized the pure pursuit algorithm, which combines the particle
filter and pure pursuit control to enable our car to follow the predefined trajectory on the map. Through
our implementation, we have demonstrated the ability of our car to navigate autonomously and precisely
follow the planned path, ensuring a smooth and secure ride to our destination.

5 Lessons Learned

[AY] On the technical front, I learned about A* search and that often, it is best to try out simple methods
first. As mentioned in our briefing, we started out with an approach for computing neighbors that was great
in theory, but actually applying it caused hours of headache from attempting to debug it. In the end, we
resorted to a simpler pixel-based implementation that was theoretically sower, but ended up giving great
results nonetheless. In the future, I would implement the simpler method first, and then follow up by modi-
fying it. For CI, I realized that although modular work is better, it is a mistake to overlook the importance

15

of helping everyone understand each step of the pipeline; those that worked on planning should also have a
good understanding of the pure pursuit, and vice versa. That way, during integration, simple issues can be
addressed quickly instead of being blocked.

[JS] Technical: I learned more about how pure pursuit works. From a big picture perspective, pure pursuit
seemed much simpler than PID control: drive towards a point. However, implementation turned out to be
more complicated than I expected. Finding the exact point to follow required some mathematical gymnastics
using vectors and dot products. In addition, there were a couple of different edge cases we had to handle,
such as two intersection points in a single line segment and multiple intersection points across multiple line
segments. Communication: I learned that modularization is a really powerful tool. I conceptually under-
stand how we generated a trajectory using A*, but I don’t know much of the technical details. However, I
don’t have to. In order to implement pure pursuit, all I needed to know was the output of A*: a path as a
series of line segments. This was enough to finish pure pursuit, and synthesize our work as a final step like
magic.

[RS] From a technical perspective, I learned about new path planning algorithms and learned the respective
pros and cons to each. I also learned how some of these algorithms are certainly easier to implement than
others, for we tried to implement an algorithm using the ideas behind a visibility graph for more efficient
path planning, but that process was riddled with bugs that we couldn’t solve. This was in contrast to A*,
which was quite simple to implement.
This leads well into what I learned on the communications side: Start with a simple idea and build out
complexity from there. I knew that the visibility graph idea would be more efficient than A*, but I did not
anticipate the difficulty with implementation. If I had instead started with A* first and then worked my way
up to the other idea, I don’t think I would have ran into as many errors, for I’d have already encountered
similar errors in the simpler case of A*. Thus, moving forward, I’ll start with simpler ideas and iteratively
increase the complexity for my efficiency. That way, it’ll be clear where things are going wrong, and I’ll more
easily be able to debug.

[SY] Technically, I gained a deeper understanding of search-based planning algorithms, including their imple-
mentation, optimization, and various techniques to enhance their performance. Furthermore, we developed
the ability to combine different steps of various implementations and integrate them into a cohesive sys-
tem, demonstrating practical engineering prowess. Another significant aspect of my learning experience is
exploring and comparing the characteristics, performances, and weaknesses of both search-based and sample-
based planning algorithms. This enabling me to make informed decisions when selecting an algorithm for a
particular task.
At CI aspect, I recognized the importance of efficient parallel task completion by dividing responsibilities
among team members. This approach ensured that each team member could focus on their area of expertise,
resulting in a more streamlined workflow and timely project completion. In addition, I learned to balance
teamwork with individual preparation. By allocating time for self-preparation, we can be better equipped
to contribute effectively to the team, the together teamwork like co-programming also will be more effective.

[MW] Technical: This lab was particularly enjoyable because it required us to apply our prior knowledge
of localization to achieve path planning. It was fascinating to see how our previous coding skills could be
utilized to accomplish this task successfully. I was particularly proud of our performance in the pure pursuit
section of the lab, as we were able to get our individual sections functioning well early on.
Communication: However, we could have improved by initiating integration testing a little earlier in the
process. During the lab, I also learned more about the A* search algorithm and other strategies to optimize
search algorithms. Witnessing the car drive autonomously was incredibly rewarding and left me feeling
fulfilled by the experience.
[OM] On the technical side, I was able to practically expose myself to path-planning algorithms for the first
time and research the tradeoffs between sample-based planning and search-based planning. Furthermore, I
expanded my knowledge on control algorithms from solely PID control to now include pure pursuit, which
has a more geometric, grounded derivation.
In terms of communications lessons, I realized that sometimes there is a tradeoff between the efficiency

16

parallelized worflow and lack of understanding. I focused almost entirely on the controls portion of this lab,
and was therefore left a bit behind in regards to the planning portion. Luckily, through asking questions
and investigating the code, I was able to catch up. However, this was an unnecessary time sink that should
be avoidable in the future. I should make sure to stay more involved in other portions of the lab, even if I’m
not directly contributing to the code.

17

	Introduction (MW)
	Technical Approach
	Problem Formulation (AY)
	Path Planning (RS)
	Pros and Cons to Other Motion Planning Algorithms
	How A* Works Through the Graph with A* (RS)
	A* Optimizations
	Graph Construction (RS)
	Path Compression

	Path Following
	Identifying The Nearest Line Segment (JS)
	Locating a Point on the Path to Pursue(OM + JS)
	Path Following Using Pure Pursuit on Nearest Path Segment (OM)

	Deployment in Real Environment (OM)

	Experimental Evaluation
	Testing in Simulation (AY)
	Testing in Real Environment (OM)
	Bonus: Fastest Implementation in Real World (SY)
	Limitations (SY)

	Conclusion (MW)
	Lessons Learned

