
Lab 3 Report: Wall Following on Racecar

Team 19

Michael Wong
Alan Yu

Joshua Sohn
Owen Matteson

Ragulan Sivakumar
Shenzhe Yao

6.4200: RSS

March 11, 2023

1 Introduction (MW; edited by OM)

Wall following is one of the fundamental baselines for an autonomous racecar. Our purpose in this lab was to
implement a wall following algorithm for an RSS racecar by utilizing the data published by the mounted Li-
DAR scanner (Figure 1). We planned for this algorithm to be capable of handling noise and unpredictability
in the LiDAR representation of the environment. Furthermore, we saw it valuable to add safety capabilities
to the system in order to assist in avoiding collisions with dynamic and static obstacles. We were able to
utilize the group members’ various algorithms from Lab 2, wall following in a simulated environment, in
order to accomplish this goal.

As a group, each of us had unique pipelines and strategies to tackle the wall-following in simulation problem.
Starting from a baseline pure PID controller, we pieced together unique ideas while also acknowledging and
accounting for the weaknesses of each.

To improve our car, we discovered three main problems to address.

Our initial challenge was dealing with the car oscillating left and right. We were able to follow a straight
wall, but starting angled away caused a series of over-corrections and infinite oscillations.

Another obstacle we faced was detecting and navigating corners effectively. With the pure PID controller,
we could execute sharper turns by increasing the scan range. However, this was insufficient and we had to
turn to a separate corner detection algorithm.

Because the racecar’s actions were at first unpredictable, it was also necessary to implement a safety con-
troller. The safety controller works in the background, continuously monitoring the car’s movement and
taking over autonomous control if necessary. If the car approaches an obstacle within a certain distance, the
safety controller’s primary objective is to bring the car to a stop and prevent any damage.

For each of these issues, we designed an individualized test case to quantify how much our changes im-
proved the algorithm. We also developed an overall test suite to evaluate the improvement between the PID
controller and our final product, M.A.J.O.R.S.
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(a) LiDAR Scan (b) Car in Real World

Figure 1: Visualization of the RVIZ LiDAR scan (a) associated with the car’s position in the real world (b).
The lasers identify objects surrounding the car and exhibit some noise.

2 Technical Approach (2500 words)

2.1 Problem Formulation (RS)

In this lab, our goal was to create two robust algorithms for our racecar: a wall-follower and a safety
controller. For the wall-follower, we wanted our racecar to follow a wall on the right or left-hand side at a
given desired distance, δ, away with small steady-state error from said desired distance. We also wanted our
racecar to turn appropriately at corners. For the safety controller, we wanted our racecar to only stop when
it does not have enough time to avoid an obstacle, for this would prevent damage to our racecar and the
obstacle impeding our path. With these goals in mind, we took the following initial approaches in coming
up with our wall-follower and safety controller.

2.2 Initial Approaches (RS)

2.2.1 PID Control

Before progressing, let us describe a technique employed within our wall-follower: PID control. PID stands
for proportional, integral, and derivative. These terms are in reference to the measured error between our
actual system and what is desired. For example, we multiply our error by constant Kp for proportional
control, the derivative of our error by constant Kd for derivative control, and the integral of our error by
constant Ki for integral control. We sum those three values to get the command we send to our system
actuator. If Kp,Kd, and Ki are chosen well, this feedback loop will converge towards our desired behavior.

2.2.2 Wall-Follower

Each member of our group came up with an implementation for a wall-follower in simulation. Thus, we first
tested each implementation on the racecar. The two most promising implementations were Design A 2, a P-
controller whose Kp value varied inversely with racecar velocity, and Design B 3, a traditional PID-controller
that was better at navigating around walls.

2.2.3 Design A: P-controller with velocity-dependent Kp

With this P-controller, our procedure was as follows:
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Figure 2: Initial implementation using velocity-dependent gains.

Figure 3: Illustration of scan angle partitioning.
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1. Scan the LiDAR data on the side we are wall-following for the minimum distance to the wall, minima,
and compute the angle, ang min, of the vector minima with respect to the racecar.

2. Compute

ang cmd = sin−1(
minima− desired distance

velocity
)

This is the angle we should go at to eradicate our error in 1 second if we were already driving parallel
to the wall.

3. Compute ref angle.

• Wall-Following on Right: ref angle = ang min+ π
2

• Wall-Following on Left: ref angle = ang min− π
2

This calculates how far our current driving angle is from parallel to the wall. This exploits the fact
that we want the minimum distance to come at angle −π

2 for wall-following on the right and π
2 for

wall-following on the left, for these would mean that we are driving parallel to the wall.

4. Compute

ω =
ang cmd+ ref angle

2 · velocity
where ω is the steering angle command we send to the actuator. The angle is divided here by 2·velocity
so as to prevent the system from overshooting our desired distance and getting into oscillatory behavior.
Effectively, this makes our Kp value inversely proportional to velocity.

5. However, if our turn checker module indicates that there’s a wall ahead of us, override steering angle
and instead set it to the maximum angle away from the side we’re following.

2.2.4 Design B: PID-controller

Figure 4: Pipeline for the velocity-independent controller.

With the traditional PID-controller, our procedure was as follows:

1. Scan the LiDAR data on the side we are wall-following. Compute a regression line for the wall.

2. Find the closest point by taking the absolute horizontal distance from this regression line relative to
the car after converting from polar coordinates. Denote this horizontal distance as y curr.

3. Compute error as the following:

error = desired distance− y curr

4. Maintain an integral and discrete derivative term for error. Multiply the integral of the error by Ki,
derivative of the error by Kd, and normal error by Kp, and then sum them to get what the new steering
angle should be. The Kp for this design was fixed at 0.80, and the other coefficients are discussed later.
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Figure 5: We partition the scanning regions into the left and right sides and regress to estimate the nearest
wall.

2.2.5 Safety Controller

For the safety controller, our initial idea was that if an obstacle was within a certain distance in front of our
racecar, then we should stop the car by turning its velocity to 0. However, we also planned to optimize this
stopping distance so as to make sure we were only stopping when we absolutely needed to.

2.3 Main Problems

2.3.1 Oscillations (JS)

While all of our individual code seemed to work well in the simulation tests, we immediately ran into problems
with following a straight line. All of our controllers were prone to steady-state error, meaning that the car
would oscillate from side to side while trying to follow a straight wall rather than travelling in a straight
line.

Increasing I and D Control Our initial reaction was to increase Ki and/or Kd, which would increase
the effect of integral and/or derivative control respectively. Our intuition was that proportional control often
leads to steady-state error, and integral control would improve steady-state error while derivative control
would improve the stability of the response. However, upon experimentation, we found that increasing Ki

by a non-negligible amount hindered the car’s ability to to respond to turns in time. For Kd, we empirically
determined an initial value of 0.10 that continued to be optimal for the rest of the lab.

Combining Design A and Design B Our solution was to combine Design A and Design B. We em-
pirically determined that there was an inherent trade-off between Design A and Design B. Using Design B
made turns more efficient but increased the steady-state error while following a straight wall. Using Design
A made it easier to follow a straight wall but decreased the car’s reaction for turns. Therefore, we decided
that our final error signal should be a convex combination of the error signal from Design A, ωA and the
error signal from Design B, ωB . Through experimentation, we find the optimal relative weight α∗ between
these two error signals, giving our overall error signal

ω∗ = α∗ωA + (1− α∗)ωB , (1)

where α∗ is defined as the optimal Ragulan Coefficient, which the group named after one of its members,
Ragulan Sivakumar, who was responsible for the creation of design A.

Ridge-Regularized Least Squares (AY) Qualitatively, we also noticed that the regression line was
unstable, even when only following a straight wall. In order to add more smoothness to the estimate,
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we introduce an ℓ2 regularizer in the least squares objective. Hence, given scans {(xi, yi)}Ni=1, we stack

y = (y1, . . . , yN )T and X =

x1 1
... ...
xN 1

 , the new regression optimizes the objective

min
β∈R2

||y−Xβ||22 + λ||β||22, (2)

where λ is the regularization parameter. This gives the closed form solution

β = (XTX+ λI)−1XTy. (3)

Furthermore, we filtered out outliers by only considering values within µ±1.5σ for both the x and y distances
from the wall before calculating the ridge regression, where σ is the standard deviation and µ is the mean.
This allowed the regression to ignore points that were far from the racecar in order to not skew the fit.

2.3.2 Approaching Corners (AY)

There are two types of turns we want our wall-follower to be able to make: inside and outside ones. Inside
turns are where the car turns on the inner 90◦ of a corner, whereas outside turns are where the car turns
on the outer 270◦ of a corner. Our racecar will run across both of these in real life, so it is essential that it
handles these turns properly.

Figure 6: An illustration of inside and outside turns. Inside turns occur on the interior of the intersection of
two walls, while outside turns navigate around the exterior.

Design B followed straight walls with strong oscillation from the desired distance but was better at making
outside turns. Meanwhile, Design A handled straight walls and inner turns well (due to the built-in corner
detector override), but it would get confused on outside turns. It would also struggle when the turn was
tighter and had a much higher deviation from the desired distance than the PID-controller. Thus, our goal
was to figure out how to combine these two implementations into a more-robust wall-follower.
Up to now, Design B’s navigation around corners relies on purely the regression line and PID controller
response. When approaching an inside corner (Figure 6), increasing the scan range ∆θ results in a sharper
turn. However, we find that a large ∆θ is at odds with stability, since reading too far ahead can pick up
points not on the wall. Hence, we restrict ∆θ to a smaller range of π

3 and instead draw upon Design B’s
separate step for corner detection.
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Inside Turns Our first attempt at resolving this issue was to estimate a good turning distance as a function
of speed using a linear model. To do this, we fixed a desired distance δ and empirically determined n pairs
of tuples (v, d), where v is the car velocity and d is the threshold for turning. We regress d ∼ v, to get the

estimate d̂(v) = β̂v + α̂.

Figure 7: The viewing region of the car as it approaches a wall for turning. We filter points outside the
width of the car.

The car detects if d is attained by scanning the rectangular space in front of it (Figure 7) and applies
the maximum steering angle ϕ when reached. However, as we varied δ at test-time, we noticed that our
predictions failed to generalize.
In our next attempt, we realized that in a perfect environment with zero latency, the velocity of the car
should not affect its turning radius r. In fact, the variation in d should be a consequence of δ and ϕ, as
shown in Figure 8, which we failed to account for in our first attempt. There is also some dependence on
the vehicle dimensions. Specifically, let L be the length of the vehicle. Then, as illustrated in the figure, we
have

r =
L

sinϕ
,

so

d = r + δ =
L

sinϕ
+ δ.

This result seemed to generalize better across different values of δ but was turning too late for high values
of v. We concluded that this must be due to latency in processing the LiDAR scan data, so we include a
linear term γv to account for such noise. This gives the final inner corner turning threshold of

d(v, δ) =
L

sinϕ
+ δ + γv, (4)

where we determine γ empirically. Unsurpisingly, the optimal value of γ is closely related to β̂, the slope of
our original regressed predictor function, since in both cases d is assumed to be linear in v.

Outside Turns Because the algorithm for inside turns depends on detecting a front wall, it does not
extend naturally to outside turns. In particular, we noticed that if there is a narrow hallway with two walls
close together , the robot will fail to recognize the hallway and instead turn along the far wall (Figure 9).
Hence, with the above implementations, the robot will not reliably navigate outside turns. To fix this, we
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Figure 8: Figure showing how to compute the desired turning threshold d. The red vector indicates the
direction of the outer front wheel, giving the relationship L = r sinϕ.

Figure 9: An outside turn scenario where the close proximity of the far wall provides a false positive for the
inside turn logic.
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include an outside turn detector.

We observe that the main characteristic of an outside turn is the presence of empty points on the desired
turning side. To recognize this case, we add another layer to the inside turn logic (see Algorithm 1). If the
maximum distance on the desired side exceeds the threshold η from a wall, indicating an absence of a wall,
then we have identified an outside turn and ignore the inside turn command, running PID uninterrupted.

d ← L
sinϕ + δ + γv

x ← min(front ranges)
if x ≤ d then

if max(side ranges) > η then
return False

else
return True

end

else
return False

end
Algorithm 1: Corner Detection Algorithm

2.4 Safety Control (JS)

Initial Approach Our initial approach was to scan angles that roughly corresponded to the front of the
car (Figure 10.1). We arbitrarily chose the threshold values [−π

6 ,
π
6 ]. We decided that the car should stop as

soon as the minimum range within these scanning angles is less than a certain stopping threshold. For now,
we set this stopping threshold to be a function of desired distance and velocity.

Scanning 1.0 We realized that directly slicing the LiDAR scan data was incorrect. Because the LiDAR
scans are discretized by angle, it will sometimes detect objects to the side that are not directly in front of
the car. Therefore, our first iteration converted the polar scan data into a Cartesian coordinates system of
(x, y) points (Figure 10.2). By constraining the y values to be the within the width of the car, we are only
looking at objects that are actually in the car’s path.

Scanning 2.0 However, we ran into another issue during turns where the car would stop because it sensed
a wall in front of it while it was turning that would not actually obstruct the cars path. We solved this
issue by implementing an inverted triangle, where the scanning region decreases linearly as a function of the
distance from the front of the car (Figure 10.3).

Stopping Threshold Finally, the stopping threshold was incorrect. First of all, desired distance should
not affect the stopping threshold at all. Just because the car wants to be closer or farther from the wall has
no impact on whether the car will crash or not. However, we were correct that velocity should determine the
stopping threshold. In a perfect world, the stopping threshold would be a very small constant, and the car
would stop instantaneously at that distance every time, regardless of velocity. Unfortunately, we live in a
world of latency, so it takes time for messages to travel from one point to another. More specifically, a non-
negligible amount of time elapses between the instant the car crosses the stopping threshold and the instant
the motors stop moving. During this time, the car continues to move at a given velocity. Therefore, for higher
velocities, the stopping threshold should be higher. The exact relationship between velocity and stopping
threshold was determined experimentally by manually adjusting the stopping threshold; for a certain set of
velocity values, we recorded the minimum stopping threshold that would prevent a crash. Once we had these
data points, we applied a simple kinematic equation to find the best fit:

v2f = v2i + 2a∆x (5)
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According to this equation, the stopping threshold should be a function of the velocity squared. Therefore,
we used quadratic regression across our data points to calculate the stopping thresholds for a set of possible
velocities.

2.5 Overall Pipeline (AY / Figure by RS)

With the above problems addressed, we now summarize our overall pipeline (Figure 11) . Note that the
safety controller is ready at all times, and when triggered will override any command.

1. Receive the LiDAR range scan and choose two subsets to form the left and right scans defined by the
range ∆θ, indicating how far above the horizontal to read for each side.

2. Send scans into the two control pipelines A and B which output error signals ωA and ωB , respectively.

3. Check if there is a possible inside turn. If so, ignore the control outputs and max out the steering
angle. Otherwise, continue with PID.

4. Define the overall control output as the convex combination ω = αωA + (1 − α)ωB , where α is the
Ragulan Coefficient.

5. Send ω to the PID controller and stand by for the next scan.

3 Experimental Evaluation

3.1 Making a Decision on a Validation Metric (OM)

In order to validate the system, we sought a useful metric to quantify its success. As the desired distance
to the wall is used as the set-point for the controller, we decided that the error from this set-point was a
relevant and encompassing value to use to evaluate the system. This error was measured from the linear
regression model of the scanned wall, which we realize could lead to minor inaccuracies in some test cases.
However, using the shortest distance from the actual wall could lead to inability to analyze the trends due
to excessive noise, and the estimated regression line should serve as a reasonable approximation. We apply
this error metric in order to tune hyper-parameters and evaluate the performance of our system.

3.2 Determining Relative Controller Weights (OM)

With the controller comprised of the velocity dependent portion and the simple PID portion, our first priority
was determining the relative weight of each component that would minimize the error from the set-point.
We consequently designed a test to confidently ascertain the best values for these weights. For the entirety of
the experiment, the car’s velocity was held at 1 meter/second, and the racecar was placed 1 meter away from
a straight wall with few irregularities. The desired distance was set to 0.5 meters, resulting in an offset of 0.5
meters from the set-point. The wall follower node was then run on the racecar for approximately 10 seconds,
with the error from the set-point being recorded at a frequency of approximately 10 Hz. The independent
variable was the Ragulan Coefficient, which was manipulated on a range of [0, 1.0], with a higher density
of trials recorded around 0.8 (our original qualitative approximation). The integral time-weighted absolute
error was calculated for each trial, which we approximate by our discrete observations:

1

tf − t0

∫ tf

t0

|d(t)− δ| dt ≈ 1

tf − t0

N∑
i=0

|d̂(i)− δ|∆ti, (6)

where ∆ti denotes the time between successive observations. For the lower Ragulan Coefficients, and there-
fore higher dependence on pure PID control, there was higher integral error. This can be attributed to
over-corrections in the PID control resulting in oscillations around the set-point. Since the testing environ-
ment is a straight wall with little turning required aside from the initial correction to the set-point, the trend
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Figure 10: Iteration of our safety controller scans over time from left to right: 10.1, 10.2, 10.3. The LiDAR
scanner is depicted as a black dot, and the scanning area is depicted as the region highlighted in yellow.
Variables: d = stopping threshold, W = width of the car.

Figure 11: Block diagram outlining the overall pipeline. Note the role of the safety controller as a supervising
node.
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line predicts that the higher the Ragulan Coefficient, the lower the integral error; however, we observed that
depending fully on this velocity dependent component reduced the reliability of outside turns. Ultimately,
we combined these observations to land on a value of 0.82, the best observed value after taking the turning
trade-off into account.

Figure 12: A graph illustrating the relationship between the Ragulan Coefficient and the integral time-
weighted absolute error of the racecar from the set-point. The conditions include a 10 second interval on a
straight wall with a set-point of δ = 0.5 meters, and initial distance from wall of 1 meter.

3.3 Determining a Model for Safety Distance (OM)

Through qualitative testing of the safety controller and application of basic kinematics principles, we deter-
mined that there needed to be some velocity dependence for the safety controller stopping distance. Higher
speeds required a higher stopping distance to allow more time for the car to decelerate to 0 velocity. Since
it was difficult to measure the deceleration of the car by hand, we decided to collect data on the distance
required for a successful stop for a range of speeds [0.5 m/s, 3 m/s], and analyze these values to create a
generalized predictor function. The predictor function, visualized in with the lowest coefficient of determi-
nation (R2 = 0.99081), and therefore the best fit, was second order. This is consistent with the physical
explanation described in section 2.4.
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Table 1: Safety Distance at Different Velocities

Velocity Safety Distance
m/s m
.5 .30
.75 .45
1.00 .55
1.25 .65
1.50 .72
1.75 .79
2.00 .87
2.25 1.02
2.50 1.35

Figure 13: A graph illustrating the relationship between velocity and stopping distance for the safety con-
troller. We get yfit = 0.1113x2 + 0.1280x+ 0.2656.

While this model is representative in theory, we sought to validate the reliability of this model. We devised
three classes of obstacles that the car should be able to detect and not collide with. The first was a static
obstacle, which we represented using the brick from the lab materials (Figure 14). In application, any obstacle
lying in the path of the robot without changing its position would be a static obstacle. We also tested for
obstacles with horizontal velocity, represented by a walking group member (Figure 16), and obstacles with
vertical velocity, represented by a falling brick (Figure 15). Based on these three expectations, we created a
small test suite that should create an illustrative picture of the capabilities of the safety controller. These
tests were analyzed qualitatively, as the success of a safety controller is binary. As depicted, all three of
these tests were successes indicating a high level of robustness.
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Figure 14: A static obstacle safety test using the stationary brick.

Figure 15: A vertically moving obstacle safety test.

Figure 16: A horizontally moving obstacle safety test.
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3.4 Evaluation of Final System (SY; Plots by AY & OM)

In this part of the report, we will the experimentally test the final wall-following algorithm, quantitatively and
qualitatively evaluating the strategy’s performance. Our evaluation consisted of a test suite of six scenarios,
designed to test the algorithm’s capabilities in following straight walls, navigating turns, and completing
complex environments. For each scenario, we compare the performance of the initial PD design to the final
design, which incorporates a convex combination of the two control pipelines and a Ragulan coefficient of
0.82 that we hypothesized would improve the stability and robustness of the algorithm. Overall results are
summarized in Table 2.

Table 2: Overall Test Results (Average Error) Across Six Scenarios

Test Scenario 1 2 3 4 5 6
MAJORS 0.057430 0.023599 0.03827 0.13222 0.33494 0.20890
PID 0.11907 0.063565 0.06730 Fail Fail Fail

Scenario 1: Straight Wall Follower with No Perturbation

The first scenario involves a straight wall follower with no perturbation. This test is designed to assess the
algorithm’s ability to follow a straight wall without any external disturbances. In this scenario, we set the
Ragulan coefficient to 0.82 and compared the performance with the initial PD design, where the coefficient
was set to 0. To ensure a thorough evaluation, we set the initial error to 0.5, a value that is high enough for
the algorithms to show their convergence properties to a lower error value.

The plot in Figure 17 shows the error values for both designs over time, “MAJORS” indicates the Ragulan
0.82 implementation. As we can see, the curves shows that the final “MAJORS” design reaches an error
of 0 much faster and has less oscillation. This suggests that the inclusion of the Ragulan coefficient in the
control error mix improves the stability and robustness of the algorithm in following a straight wall without
any perturbation.

Figure 17: A graph depicting the improvement from the original PID design to the final M.A.J.O.R.S. design
for the case of a straight wall with no initial perturbation from the set-point.

Scenario 2 & 3: Straight Wall with a 30 Degree Angle In and Out

For scenarios 2 and 3, we tested the algorithm’s ability to handle external perturbations in the form of a
30-degree angle in and out of the straight wall, respectively. As shown in the diagram of the test setup
Figure 18, the wall was positioned with the angle in or out to create the desired perturbation.
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Figure 18: An illustration of “in” and “out” wall case setups. In the diagram, the car follows the left wall.
For the “in” case, the wall leans towards the center axis of the car. For the “out” case, the wall leans away
from the center axis of the car.

In the “in” case, we set the initial error to 0.1. This value was chosen because a smaller wall-following
distance requires the algorithm to have higher recognition and response capabilities. In the “out” case,
we set the initial error to 0.25. This value was chosen because in this case, the algorithm needs to main-
tain robustness to prevent loss of following ability from where the wall is in a direction away from the vehicle.

The test result Table 2 shows the cumulative mean error values on time for both designs in the “in” and
“out” cases, MAJORS designs both have lower mean error than just PID. The plots in Figures 19 and 20
further illustrate this, MAJORS has a consistently lower error values, showing that the final design has less
oscillation and reaches an error of 0 faster than the initial design. This indicates Ragulan coefficient mixed
control error improves the robustness of the algorithm in following a straight wall with angles.

Figure 19: A graph depicting the improvement from the initial PID design to the final M.A.J.O.R.S. design
for the case of a straight wall with the car angled in by 30◦ to start.

Scenario 4 and 5: Testing the algorithm’s ability to handle inner and outer corners with a
90-degree angle
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Figure 20: A graph depicting the absolute error over time for the initial PID and final M.A.J.O.R.S. imple-
mentation for a straight wall test with the car angled out by 30◦ to start

Scenario 4 and 5 were designed to test the algorithm’s ability to detect and follow a second wall at a 90-degree
angle. In Scenario 4, the car started on the inner side of the corner, while in Scenario 5, the car started
on the outer side of the corner. To achieve this test, we created a test course with a straight wall and a
90-degree corner with the second wall as Figure 6. The car with Ragulan coefficient of 0.82 started at the
beginning of the straight wall and was required to follow the wall around the corner and then follow the
second straight wall.

Figure 21 and Figure 22 illustrate the error over time for the final design with the Ragulan coefficient of 0.8.
The plots show that the error value increases rapidly and decreases rapidly, indicating a fast response time
of the algorithm when detecting and following the second wall. Also, the peak value of oscillation during
following is lower than that of the initial PD design in straight falling, indicating that the algorithm has a
more stable and robust response when encountering a corner.

Additionally, for the “in” case, we tested several speeds, including 0.5, 1.0, 1.5, 1.75, and 2.0. The purpose
was to evaluate the suitability of the algorithm for different speeds. The results showed that the final design
worked well for all tested speeds, with no signs of failure or collision with the wall. In the “out” case, we
tested the algorithm’s ability to handle a typical velocity of 1.0. The results showed that the final design
can efficient detecting and following of the wall.

Scenario 6: Around the world. Testing the algorithm’s ability to handle a complex room

In this scenario, we tested the algorithm’s ability to handle a complex room with multiple walls and corners.
To achieve this, we designed a test course with a complex room that included multiple corners and walls,
making wall-following tests around a room with complex layouts.
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Figure 21: A collection of graphs depicting the absolute error over time for an inner turn for the M.A.J.O.R.S.
design at varied speeds (m/s). Not pictured are the results of the original PID design, as it failed the 90◦

outside turn that was used for the test case at every speed.

Figure 22: A graph depicting the absolute error over time for the final M.A.J.O.R.S. implementation for an
outer corner test.

We compared the performance of the final design with the initial PD design. The plot in Figure 23 illustrates
the error over time for the both designs. It shows that the initial PD design failed to follow the wall after
it encountered the third corner, as seen in the curve that at the third peak of error, the curve stays at a
high value and didn’t come back to 0. However, for the final design with the Ragulan coefficient of 0.8, the
car successfully worked until the end without any failure in any corner. Also, the peak value of oscillation
during following is lower than that of the initial PD design, indicating that the algorithm has a more stable
and robust response when encountering corners.

Overall, these scenarios results suggest that incorporating the Ragulan coefficient into the control system
can significantly improve the wall-following algorithm’s performance, particularly in complex environments
with multiple corners and wall directions. The mixed control error of PD and Ragulan parameters allows
for a more adaptive response to varying conditions and enhances the algorithm’s ability to navigate through
challenging terrain.

4 Conclusion (MW / edited by OM)

From the outset, the group’s goal was to develop a capable and adaptable wall following algorithm for an
autonomous racecar. The algorithm subscribes to the LiDAR scan and processes it through linear regression
to model the wall’s position. It then publishes a steering command based on the error from the wall and
the car’s velocity using an augmented PID controller that intends to minimize this error. The car is also
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Figure 23: A graph depicting the absolute error over time for the initial PID and final M.A.J.O.R.S. imple-
mentation for an “around the world” test, which was comprised of six 90◦ inner turns around a room.

equipped with a safety controller that uses LiDAR data to identify unexpected obstacles around the car and
brake the car smoothly to prevent collisions.

We overcame challenges such as minimizing oscillations and effectively detecting and navigating corners.
Our group’s combined efforts resulted in a more robust controller that performs well in both simulated and
real-world settings. The safety controller works in the background, continuously monitoring the car’s move-
ment and taking over autonomous control if necessary, which adds an extra layer of protection to the racecar.

We are aware of the limitations that still need to be addressed in future labs to improve our racecar.
One of the issues we encountered was that the car is unable to detect obstacles that are low to the ground
due to the placement of the LiDAR. Additionally, reflective surfaces introduced a degree of confusion in the
LiDAR data, hindering the car’s performance. We also acknowledge that there is a ceiling on how sharp of
a turn the car can take due to its turning radius. Another limitation was that the car can only take into
account one side at a time (left or right). Furthermore, we found that the safety controller is somewhat
unreliable for speeds in the range of 3 to 4 m/s. We also found that we had too many hyperparameters
to tune, making the tuning process inefficient and time-consuming. This affected the overall performance
of the racecar and limited its ability to navigate and perform tasks effectively. However, as a team, we are
committed to finding ways to optimize the tuning process and improve the racecar’s performance in future
labs. Overall, we worked cohesively and are looking forward to the next lab where we can continue to develop
our racecar’s abilities through computer vision.

5 Lessons Learned

Michael During the lab, I gained knowledge in both technical and communication aspects. Among the
challenges we faced, I found the processing of LiDAR data and tuning of the PID controller to be particularly
difficult. In retrospect, I should have been more proactive in using my expertise in dynamics and controls
to solve these issues earlier. It’s important for us to recognize each other’s strengths and utilize them
appropriately to succeed in this class. This was also my first experience collaborating on code, and I learned
the significance of communicating my thought process to my teammates. As we have now become familiar
with the hardware, I believe that delegating tasks and planning our workflow more effectively will not only
help us solve technical problems faster but also improve our briefing and report organization.

Alan From a technical perspective, this lab introduced me to PID control and taught me how to think
critically about car kinematics. A highlight of my experience working with the PID controller was thinking
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about making the control a weighted sum of two different error signals (using the Ragulan Coefficient).
For car kinematics, I enjoyed thinking about the geometry of the inside turning problem when our original
regression approach did not work out. I also learned there is a balance between tuning hyperparameters
and implementing more logic for corner cases. For example, tuning the gains can be very helpful to improve
turning, but only to a certain extent. It was really helpful to implement separate turning logic in this case.
From a CI point of view, this lab made me realize how important planning, organization, and communication
is to success of a team. I made a Notion page for the team which we use to hold important documentation
(e.g. how to start the car), task lists, meeting notes, and important links. It helped a lot to document our
daily work and have a home base to jot down important information. Planning was essential for our testing
phase in order to not get lost running arbitrary trials, so we prepared a list of test cases and a test suite for
overall evaluation. Still, there are many areas for improvement here. To make the next lab smoother, we
should utilize the task list more and set deadlines and milestones for each person in order to hold each other
accountable.

Josh Technical: First, I learned about the capabilities, but more importantly the limitations, of PID
controllers. Through 2.003 and 2.004, I have a solid theoretical background in controls. However, this was
my first time coding my own PID controller from scratch. I’ve also never combined different controllers
before, so optimizing two controllers to work simultaneously was an interesting problem to solve. Second, I
experienced the frustrations of the sim2real gap firsthand. All of our controllers performed very well in the
simulations (around 97%). However, none of our controllers actually worked in real life. For instance, my
controller had code that explicitly scanned the front of the car and turned accordingly, which worked nearly
perfectly in the simulation. In real life, my controller was completely unable to perform inside turns, instead
opting to run directly into the wall. I’m still not entirely sure why this occurred, since we didn’t end up
using my controller for our final code, but this ordeal made me very aware of the existence of the sim2real
gap. Communication: I learned that there is truly no replacement for in-person meetings. However, with
a team of 6 busy MIT students, it’s impossible that we will always be free at the same time, especially as
the semester ramps up. To solve this issue, we started each meeting by de-briefing any new developments to
catch up those who missed the last meeting. To this end, meeting notes were extremely helpful to document
all major design decisions. Going forward, the Notion that Alan made will become even important as a
central document of our progress as a team over time.

Owen The technical portion of the lab was my first experience working with PID control, as well as my
first time writing code that would be dictating the actions of a hardware system. My first takeaway was
that in order to avoid wasting precious time, the group had to establish an efficient workflow for setting up
the car and sharing code. We created a GitHub page where we could push/pull code, as well as separate
branches with each of our implementations. As we ran into various hardware issues, we found it valuable to
stay level-headed and focus on the work we could do without a working car. Solving these hardware issues
took time, but also allowed us to quickly recognize and fix reoccurring issues in the future. I particularly
learned for the testing process, which I spent a good portion of my time on. We initially found ourselves
constantly manipulating parameters and constants without much rhyme or reason. I’ve realized that if we
find ourselves doing this, the best option is to take a step back and reevaluate the current system. For
example, we wasted a significant amount of time attempting to tune the proportional constant for our PID
controller with various tests, but to no avail. This led us to try integrating Ragulan’s code into the controller,
and we saw improvement instantly. It can be dangerous to get stuck in one thought pattern when hitting a
roadblock, and I hope to apply this lesson to future labs and my career at large.
One of our first objectives as a team was to establish a mode for sharing ideas. We created a shared Notion
AI page for this purpose and used it for posting data, linking videos/pictures, recording meeting notes, and
attaching important pages like the car sign-up spreadsheet. I think all of the team members found this very
useful, and we will continue to use it for the remainder of the semester. One issue that I believe we can
improve upon is delegation of time. We were slightly disorganized with meeting times, and were hardly ever
able to get the whole group together, except for lab hours. In the future, we will be using a when-to-meet
form to determine everyone’s availability in order to schedule meeting times.
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Ragulan On a technical front, this lab taught me about the limitations of theoretical designs for real-world
devices. I spent lots of time trying to find the optimal steering angle, and I implemented it with miniscule
error in the simulation. However, when put onto the racecar, problems were immediately apparent. Certain
ranges of my scan data were polluting my algorithm and made my car spin in a circle. After I fixed those,
my racecar still oscillated about the desired distance when following walls because it constantly overshot the
desired distance. That is to say nothing of the issues I encountered with turning. None of these problems
were present in my simulation, and this showed me the limitation of simulation: the real-world isn’t ideal,
and we must account for this in our designs and simulations, for otherwise we’ll not see the error until
deployment and have to spend hours debugging.

From an organizational and teamwork frame, this lab taught me the value of starting early, having a
plan, and being in constant communication with my teammates. I have friends in other groups, and I am
far less stressed than them, and it’s because we started early and sustained that work ethic throughout. We
had a timeline to finish early, and we always had actionables to complete before we next met together. This
made sure we never fell behind and never felt lost. Also, with us always being in communication over text,
it’s so easy to get help from a teammate and re-oriented onto the right path. When I had the racecar on
one of the first nights, I couldn’t figure out how to run my wall-follower code, but a short five minutes later,
I was able to, for I got an immediate response from my teammates on what I was doing wrong.

Going forward, we should make outlines for labs as a whole to start and assign tasks with a clear plan of
action for each night. We had meetings at the beginning without progress, and this was because our tasks
didn’t have a clear plan of attack and no one could make meaningful progress. Addressing that will increase
our productivity and make for even easier times in the future.

Shenzhe From the technical perspective, during the lab project, I gained a deeper understanding of PID
controllers and their applications in robotics. Specifically, I learned about the importance of selecting the
appropriate combination of error signals to achieve optimal performance. Through discussions with my
team members, we realized that the different error signals reflected different features of the system, and
that combining them in different ways could help us to achieve our performance goals. As in the final
implementation, we set the Ragulan coefficient to help us take the y-coordinate of the closest point into
decision making consideration, and end up with a great performance. On experimental side, we tuned the
PID gains in real world to achieve the desired performance of the system by analysis of the overshoot,
oscillation, settling time. During tuning, we understood that the choice of error parameter selection method
was not simply a matter of trial and error, but rather reflected a deeper understanding of the underlying
physics and dynamics of the system. By analyzing the response curve, my team and I finally determine
that a Ragulan Coefficient of 0.82 provided the best performance for the system, as it better reflected the
vehicle’s ability to respond to complex environments.

Also, throughout the lab project, our team utilized a number of tools to improve our communication
and workflow. We have a shared GitHub repository, Notion site for tasks arrangement. These tools were
invaluable in enabling us to work effectively and efficiently as a team. Also, at the beginning of the project,
by summarizing and absorbing everyone’s highlights in the former project, we were able to build a well-
thought-out wall follower implementation that incorporated the best practices and insights from each team
member. We should continue to use these way to improve the efficiency and comprehensiveness of group
projects.
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